Using object oriented image analysis to classify open water, sea ice, and seals in Johns Hopkins Inlet in Southeast Alaska

Jay Bean GEOS 422 Fall 2013

Background Information

- Glacial ice is important for harbor seals
- •Most supervised classification only takes into account pixel values
- •Automating the process can greatly improve efficiency of surveys

Johns Hopkins Inlet

- Located in GlacierBay National Park
- •9 miles long, 1 mile wide (NPS)
- •Home to a variety of marine mammals
- •Glacier is actively advancing

Data Type Used

Aerial imagery

- •4 cm spatial resolution
- •8 bit radiometric resolution (256 DN values)
- •RGB spectrums

Examples of imagery used

Image Analysis Procedure

Segmentation

Multiresolution Segmentation

<u>Shape=</u> 0.8

Compactness=0.3

Segmentation

Spectral Difference Segmentation DN difference=5

First round of ice classification

•Focused on hue and texture

First round of water classification

 Used shape index and homogeneity

Second round of ice classification

•Used a RGB layer statistics and dissimilarity

Second round of water classification

•Used area and DN values

Final round of ice classification

- Classified the remaining object
- Merged objects together

Second level of object classification

- •Area >5m²=orange
- •Area <5m²=red

Discussion

- •Ruleset was good for identifying impure ice
- Wasn't ideal for high density flows
- •I wasn't always able to accurately classify seals

Conclusion

- Great for rapid classification
- •Allows for increased classification accuracy
- •Harbor seals are very difficult to classify.

Future Work

- •Use multispectral data
- Automate the process