

Glaciers, Harbor Seals, and Chinook Salmon: What your K education can do for you

Bob McNabb Post-Doctoral Fellow in Remote Sensing Geophysical Institute, U. Alaska Fairbanks

19 November 2015

Remote Sensing

Remote Sensing: gathering of information about an object or phenomenon without making physical contact with the object.

- This acquisition is typically done with satellites
- Active Remote Sensing
 - Send energy to a target, see the response
 - RADAR, LiDAR are most common examples
- Passive Remote Sensing
 - Collect only energy reflected/emitted by target
 - Most common light source: reflected sunlight
 - Cameras!

Alaska is rather big

Image classification

- Pixel-based: use "color" of pixel to determine class
 - Unsupervised classification: look for structure without any input from user
 - Supervised classification: user tells computer what to look for based on test cases
- Typically fast, not very hardware-intensive
- Can give "patchy" results for high-resolution images
- Assumes similar features will have similar responses, and that those responses are unique to those features

Pixel-based results

>

 Basic idea: break images into smaller chunks ("objects"), much like our eyes do

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:
- Once we have created objects, can build classification based on object properties:

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:
- Once we have created objects, can build classification based on object properties:
 - Pixel values in different channels (same as pixel-based methods)

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:
- Once we have created objects, can build classification based on object properties:
 - Pixel values in different channels (same as pixel-based methods)
 - Texture, brightness

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:
- Once we have created objects, can build classification based on object properties:
 - Pixel values in different channels (same as pixel-based methods)
 - Texture, brightness
 - Size, shape

- Basic idea: break images into smaller chunks ("objects"), much like our eyes do
- This process is called segmentation:
- Once we have created objects, can build classification based on object properties:
 - Pixel values in different channels (same as pixel-based methods)
 - Texture, brightness
 - Size, shape
 - Proximity to other objects/classes

Image segmentation

- Have already seen "chessboard"
- Contrast split: maximize separation between "light" and "dark" objects

Alaska has glaciers

Some of them end in the ocean

Gulf of Alaska tidewater glaciers

Molnia, 2008

Fjord ecosystems

Tidewater fjords are home to many different organisms
 ⇒ birds, mammals, fish, and non-charismatic, non-megafauna

Fjord ecosystems

- Tidewater fjords are home to many different organisms
 ⇒ birds, mammals, fish, and non-charismatic, non-megafauna
- Freshwater inputs to marine environments
 impacts beyond the immediate fjord environment, incl. circulation, acidification, productivity, etc.

Calcium carbonate corrosivity in an Alaskan inland sea

W. Evans^{1,2}, J. T. Mathis^{1,2}, and J. N. Cross^{1,2}

¹Ocean Acidification Research Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA

²National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Seattle, Washington, USA

Correspondence to: W. Evans (wiley.evans@noaa.gov)

Received: 26 August 2013 - Published in Biogeosciences Discuss.: 10 September 2013 Revised: 4 December 2013 - Accepted: 18 December 2013 - Published: 28 January 2014

Fjord ecosystems

- Tidewater fjords are home to many different organisms
 ⇒ birds, mammals, fish, and non-charismatic, non-megafauna
- Freshwater inputs to marine environments
 impacts beyond the immediate fjord environment, incl. circulation, acidification, productivity, etc.
- ▶ In Alaska, salmon (and crab, pollock, other fisheries) is the other king $\Rightarrow \sim$ \$6 billion annually, \sim 80,000 jobs

Local effects of glacier change

- Harbor Seals in Alaska use icebergs
 Desting histhing molting
 - \Rightarrow Resting, birthing, molting, evading predators
- ▶ \downarrow population $\Leftarrow \downarrow$ ice cover?
- What might we expect for the future?

Must first quantify relationship

- Must first quantify relationship
- > To date, no studies have quantified fjord iceberg cover for seal habitat

- Must first quantify relationship
- > To date, no studies have quantified fjord iceberg cover for seal habitat
- One problem: not all ice is created equally

- Must first quantify relationship
- To date, no studies have quantified fjord iceberg cover for seal habitat
- One problem: not all ice is created equally
 ⇒ to qualify as habitat, ice should be able to support a seal

- Must first quantify relationship
- To date, no studies have quantified fjord iceberg cover for seal habitat
- One problem: not all ice is created equally
 ⇒ to qualify as habitat, ice should be able to support a seal
- Need to move beyond pixel-based classification:

- Must first quantify relationship
- To date, no studies have quantified fjord iceberg cover for seal habitat
- One problem: not all ice is created equally
 ⇒ to qualify as habitat, ice should be able to support a seal
- Need to move beyond pixel-based classification:
 ⇒ First, need to break image into objects, then classify

Harbor Seal surveys

- ▶ 8 years of aerial surveys (2007-2014)
 ⇒ plane equipped with GPS, IMU, SLR camera
- Surveys conducted in June (pupping) and August (molting)
- ► Typically ~4 surveys per month (~8 year) ⇒ weather permitting, of course
- Each survey generates ${\sim}1000$ images
- ► Images have ~4 cm ground resolution

First segmentation: intensity

- First segmentation: intensity
 - Bright objects: icebergs

- First segmentation: intensity
 - Bright objects: icebergs
 - Smooth objects: water

- First segmentation: intensity
 - Bright objects: icebergs
 - Smooth objects: water
 - Everything else: brash ice

- First segmentation: intensity
 - Bright objects: icebergs
 - Smooth objects: water
 - Everything else: brash ice
- Re-segment and re-classify ice based on intensity, size

- First segmentation: intensity
 - Bright objects: icebergs
 - Smooth objects: water
 - Everything else: brash ice
- Re-segment and re-classify ice based on intensity, size
- Generate statistics (size, angularity, distance from glacier, etc.)

Ice coverage results

Ice coverage results

Ice coverage results

Togiak Drainage

Togiak Drainage Salmon Harvest

Riffles

We can classify icebergs with good accuracy

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance
 Results will be analyzed using statistical models

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance
 Results will be analyzed using statistical models
- Preliminary results indicate: more ice (and seals) in June than August

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance
 ⇒ Results will be analyzed using statistical models
- Preliminary results indicate: more ice (and seals) in June than August
- Some gaps in frontal ablation, length change time series

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance
 Results will be analyzed using statistical models
- Preliminary results indicate: more ice (and seals) in June than August
- Some gaps in frontal ablation, length change time series ⇒ could be filled using SAR, other datasets

- We can classify icebergs with good accuracy
- > 2008-2014 surveys need to be processed, checked
- Need to see how iceberg availability relates to seal abundance
 ⇒ Results will be analyzed using statistical models
- Preliminary results indicate: more ice (and seals) in June than August
- Some gaps in frontal ablation, length change time series ⇒ could be filled using SAR, other datasets
- Work classifying Chinook habitat is ongoing

▶ To answer, need to understand what they have done/are doing

- ▶ To answer, need to understand what they have done/are doing
- Many studies of regional (surface) mass balances

- ▶ To answer, need to understand what they have done/are doing
- Many studies of regional (surface) mass balances
 Tidewater glaciers complicate matters

- To answer, need to understand what they have done/are doing
- Many studies of regional (surface) mass balances
 Tidewater glaciers complicate matters
- Very few regional-scale studies of tidewater glacier length change/marine mass loss

- ▶ To answer, need to understand what they have done/are doing
- Many studies of regional (surface) mass balances
 Tidewater glaciers complicate matters
- Very few regional-scale studies of tidewater glacier length change/marine mass loss
- need to measure length change, frontal ablation (calving)

Determining Glacier Length Change

- USGS topographic maps (ca. 1950) give baseline
- ► Manually digitized for each Landsat scene ⇒ >10,000 outlines total
- ▶ Length change calculated using "Box Method"
 ⇒Average distance from terminus to an arbitrary reference line

Alaska tidewater glacier length changes

Alaska tidewater glacier length changes

Frontal ablation: sum of submarine melt and calving

- Frontal ablation: sum of submarine melt and calving
- Generally speaking, submarine melt has been ignored, but it can be majority of mass loss through terminus (e.g., Bartholomaus et al., 2013; Motyka et al., 2003, 2013)

- Frontal ablation: sum of submarine melt and calving
- Generally speaking, submarine melt has been ignored, but it can be majority of mass loss through terminus (e.g., Bartholomaus et al., 2013; Motyka et al., 2003, 2013)
- Largest unknown in terms of tidewater glacier mass balance, freshwater output from tidewater glaciers, and future sea level rise

- Frontal ablation: sum of submarine melt and calving
- Generally speaking, submarine melt has been ignored, but it can be majority of mass loss through terminus (e.g., Bartholomaus et al., 2013; Motyka et al., 2003, 2013)
- Largest unknown in terms of tidewater glacier mass balance, freshwater output from tidewater glaciers, and future sea level rise
- ▶ Need: surface velocities, ice thickness near terminus, length change

▶ Offset tracking on >2000 cloud-free Landsat scenes, 1985-2013

- Offset tracking on >2000 cloud-free Landsat scenes, 1985-2013
- Scenes spaced 16-64 days

- ▶ Offset tracking on >2000 cloud-free Landsat scenes, 1985-2013
- Scenes spaced 16-64 days
- ▶ Manual co-registration of scenes when required (<1% of scenes)

Estimating ice thicknesses

- Method based on Huss and Farinotti (2012)
 - \Rightarrow Mass conservation, inverts surface topography for ice thickness
- Initialized with assumed zero frontal ablation
- These thicknesses are used to calculate frontal ablation time series for each glacier.
- Resulting rates of frontal ablation input to ice thickness model.
 ⇒ Repeat until (hopefully) converges
- \blacktriangleright Comparison with measured ice thicknesses yields agreement of ${\sim}10\%$

Estimating Frontal Ablation

$$u_{\rm f} = u_{\rm c} - \dot{m} = u_{\rm t} - \frac{\partial L}{\partial t}$$

- ▶ Difference between rate of ice flow to the terminus u_v and rate of length change of the glacier ∂L/∂t
- Integrate this rate over a surface to obtain a flux.
 ⇒ choose a flux gate upstream of terminus
- Correct for ice thickness changes dh/dt
- Correct for surface mass balance b

Alaska tidewater glacier frontal ablation, 1985-2013

Alaska tidewater glacier frontal ablation, 1985-2013

Alaska tidewater glaciers have generally retreated

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost \sim 15 Gt/yr to frontal ablation, 1985-2013

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)
 ⇒ ≈20% of annual Rhine River discharge

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)
 ⇒ ≈20% of annual Rhine River discharge

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)
 ⇒ ≈20% of annual Rhine River discharge
- ► Total has decreased over 1985-2013 (-0.14 Gt/yr)

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)
 ⇒ ≈20% of annual Rhine River discharge
- ► Total has decreased over 1985-2013 (-0.14 Gt/yr)
- Represents only ~4% of regional total ablation

- Alaska tidewater glaciers have generally retreated
- Some glaciers advancing, others stabilized/retreated from tidewater
- ▶ 27 Alaska tidewater glaciers (14% of total glacier area in AK) lost ~15 Gt/yr to frontal ablation, 1985-2013
 ⇒ cf. Burgess et al. (2013), 17.1 Gt/yr (2006-2010)
 ⇒ ≈20% of annual Rhine River discharge
- > Total has decreased over 1985-2013 ($-0.14 \, \text{Gt/yr}$)
- ▶ Represents only ~4% of regional total ablation ⇒ see also Larsen et al., 2015, GRL