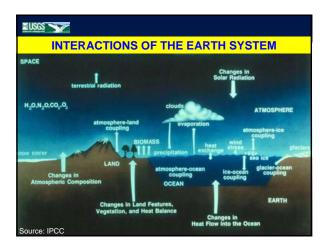


EUSGS ST

The purpose of this presentation is to provide an introduction to water on Earth, glaciers, and recent climate change. A region by region look at Alaskan glacier behavior and landscape evolution is also presented.


1

auses 🌱

A logical starting point for a discussion about Alaskan glaciers is their primary ingredient – WATER.

Water is the central component of each the interrelated spheres, cycles, and processes of the Earth System.

THE EARTH SYSTEM

EUSGS ST

97.2. % of all the water on Planet Earth is salt water.

Oceans and Inland Seas are the largest reservoir of water on Earth.

EUSGS SY

2.8 % of all the water on Planet Earth is fresh water.

Glacier ice is the second largest reservoir of water on Earth and the largest reservoir of fresh water on Earth!

3/4 of all fresh water on Earth is frozen in glacier ice.

🛛 USGS 🥆

Using the analogy that 1,000 drops of water represent all of the water on Planet Earth:

- 972 drops are in the oceans and inland seas
- 21 drops are in glaciers
- 6 drops are in ground water and soil moisture
- < 1 drop is in the atmosphere
- < 1 drop is in lakes and rivers
- < 1 drop is in all living plants and animals

USGS Y

Water (H_2O) forms hexagonal crystals as it freezes and changes to its solid phase – ice.

1 1

Ice is a mineral with definite physical and chemical properties.

At a pressure of one atmosphere and a temperature of 0° C, liquid water has a density of 0.9998 g/cm³.

At a pressure of one atmosphere and a temperature of 0° C, ice has a density of 0.917 g/cm³.

Hence, ice at Earth's surface is ~ 8 % less dense than liquid water. Consequently, it floats with ~ 90 % of its volume submerged.

1

Glacier - A large, perennial accumulation of ice, snow, rock, sediment, and liquid water originating on land and moving down slope under the influence of its own weight and gravity; a dynamic river of ice. Glaciers are classified by their size, location, and thermal regime (i.e. polar vs. temperate).

Glaciers are sensitive indicators of changing climate.

🛛 USGS 🦅

Using the analogy that 1,000 crystals of ice represent all of the glacier ice on Earth:

1

914 are in Antarctica

79 are in Greenland

~ 4 are in North America (~ 1 is in Alaska)

~ 2 are in Asia

< 1 is in South America, Europe, Africa, New Zealand and Irian Jaya

EUSGS ST

A temperate glacier is one in which during part or all of the year, liquid water coexists with ice.

Hence, a small change in temperature can have a major impact on glacier melting, area, volume, and sea level.

Liquid water may be on (pools, supraglacial streams), in (moulins, conduit systems, englacial streams), or under (subglacial lakes, subglacial streams), a glacier.

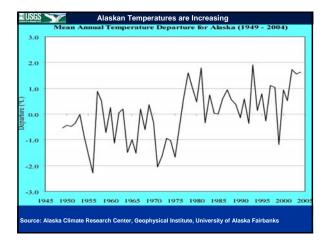
EUSGS ST

Alaska has a glacier cover of ~ 75,000 km², with > 50,000 glaciers.

Only ~ 650 of these glaciers have been officially named.

Alaska's glaciers range in size from tiny cirque glaciers (< 1 km²) to massive piedmont glaciers such as Bering Glacier and Malaspina Glacier (each > 5,000 km²), each larger than the State of Rhode Island.

17


The Area of Alaska's Glaciers is:

- ~ 1/3 the glacier area of Canada
- ~ 1/2 the glacier area of Asia
- ~ the same glacier area as Russia
- ~ 2.5 times the glacier area of China and Tibet
- \sim 3 times the glacier area of South America
- \sim 6 times the glacier area of Iceland
- ~ 12 times the glacier area of Europe
- ~ 75 times the glacier area of New Zealand
- > 100 times the glacier area of the rest of the US

1 9

> 1,000 times the glacier area of Africa

USGS ST

Less than 20,000 years ago, during the last phase of the Pleistocene, the Last Glacial Maximum (LGM), glaciers covered:

- ~ 8 % of Earth's surface
- ~ 25 % of Earth's land area
- ~ 1/3 of Alaska.

During the LGM, global sea level was >100m lower than it is today.

1 1

EUSGS SY

Following the LGM (beginning ~ 15,000 yr B.P.), continental glaciers retreated and sea level began to rise.

By \sim 6,000 yr B.P. sea level reached its current height. It has fluctuated ever since.

Today, glaciers cover:

- ~ 3.1 % of Earth's surface,
- ~ 10.7 % of Earth's land area

T

~ 5 % of Alaska.

Glaciers and Global Sea Level

If all of Alaska's glaciers melted, sea level would rise $\sim 0.05~\text{m}.$

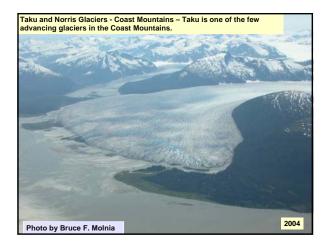
If all of Earth's temperate glaciers melted, sea level would rise \sim 0.3 m.

If all of Greenland's glaciers melted, sea level would rise \sim 6 m.

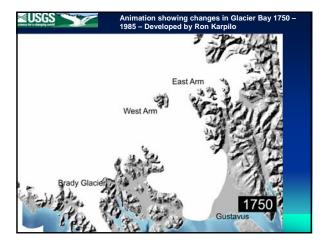
If all of Antarctica's glaciers melted, sea level would rise ~ 73 m.

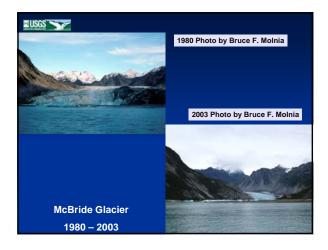
USGS ST

Eustacy refers to the change in global sea level.

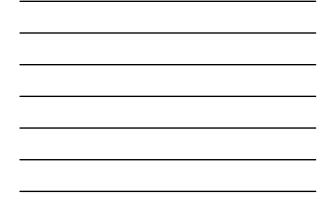

If all of the glacier ice on Earth were to melt, sea level would rise ~ 80 m, flooding every coastal city on the planet.

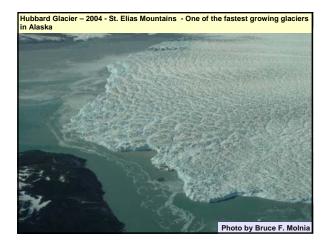
The volume of water that is estimated to be present in Alaskan glaciers is ~ 45,000 $\rm km^3$.

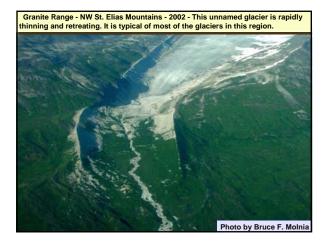


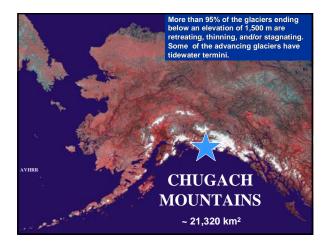


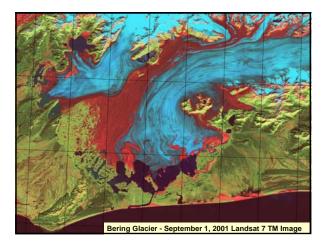


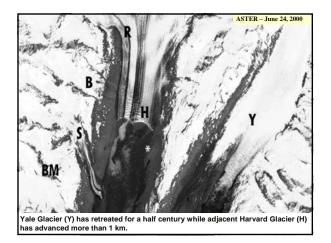




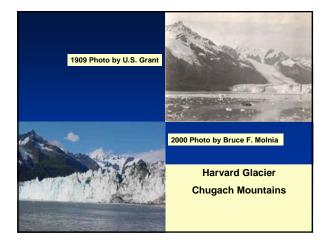


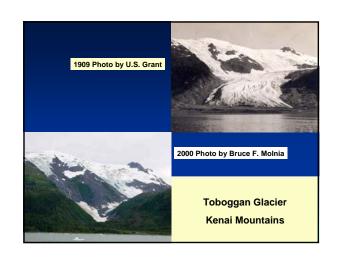




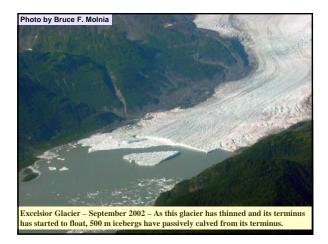

Unnamed Cirque Glaciers - Chugach Mountains - 2001– These retreating glaciers no longer reach the large valley glacier at the bottom of the photograph. Note the dramatic trimline (see arrow)

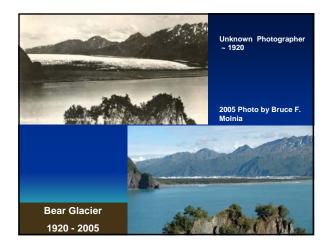


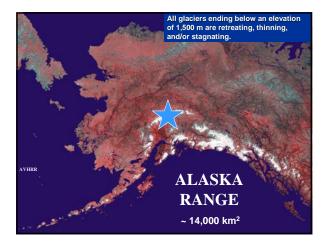


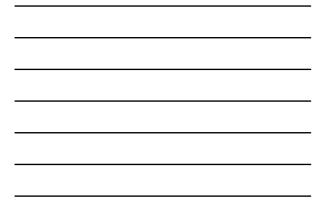


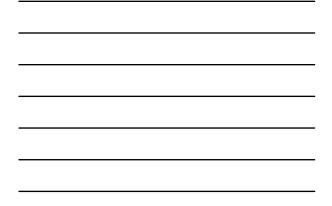


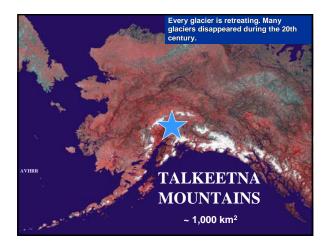


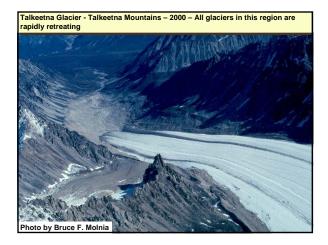


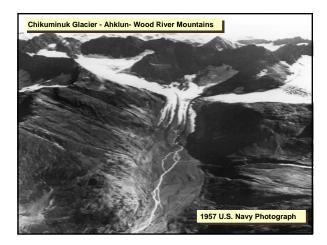


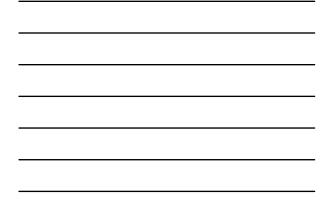


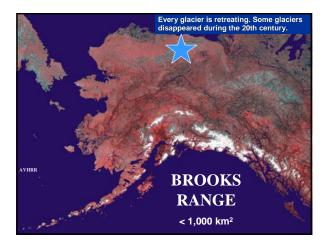


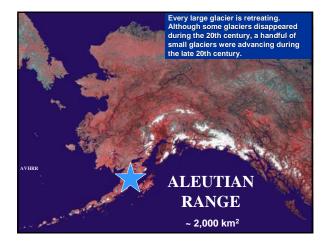


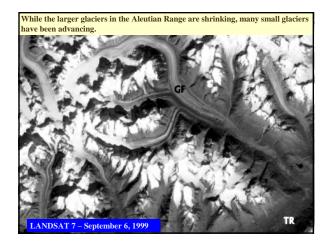


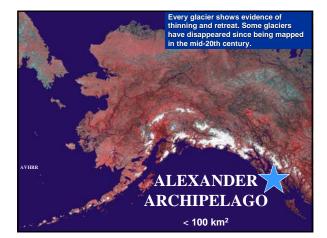


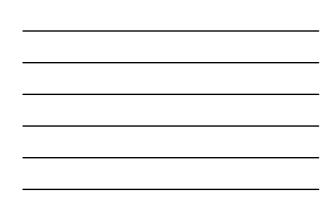


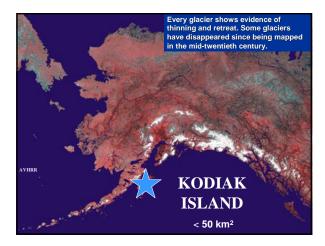


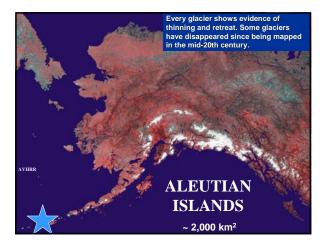












CONCLUSIONS

- Every Alaskan mountain range and island group is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations.
- All but a few glaciers that descent below an elevation of 1,500 m are thinning, stagnating, and/or retreating.
- At some locations, observed glaciers have completely disappeared during the 20th and early 21st century.

- In some areas, retreat that started as early as the early eighteenth century, is continuing into the twenty-first century.
- At some locations, retreat is resulting in the number of glaciers actually increasing, but the volume and area of ice decreasing.
- Glaciers at higher elevations show little or no change.
- Of the nearly 700 named Alaskan glaciers, approximately a dozen are currently advancing.