

GIS-GPS for Alaska Teachers

Summer 2004: A reflection

Anupma Prakash
Gary Cooper

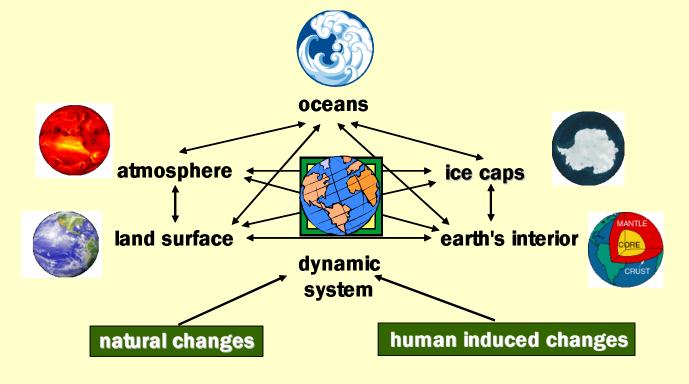
Day : Thursday

Date : October 13, 2004

Time : 1.00 am to 2.15 pm

Place: Lathrop High School

 NASA's mission To inspire the next generation of explorers


 NASAs interest to strengthen the STEM pipeline

Funded project by the Earth
 System Science Education for the
 21st century.

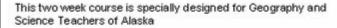
Neal Brown – Director, ASGP

- Geospatial workforce development funds
- Picked up
 - Tuition and lab costs
 - Material costs (text book, license, CDs, prints)
 - Partial expenditure for outstation participants

About the course

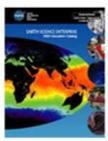
- Two weeks (June 7–18)
- Pre/Inservice Alaska teachers
- 3 credit course
- 25 hrs of lectures
- 45 hrs of supervised laboratory time
- 8 hrs field visit to an industry
- Arcview 3.x exercises
- Independent project

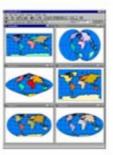
Announced


- List servers (ATRM, NASDUG)
- Web sites (ASGP, UAF, ASTA)
- Conferences
- Flyers
- Word of mouth (most effective)

GPS - GIS for Alaska Teachers

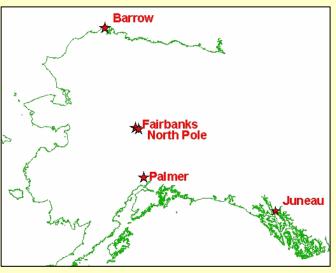
A Three Credit Summer Course (June 7-18, 2004) at UAF


Sponsored by the Alaska Space Grant Program (www.uaf.edu/asgp)



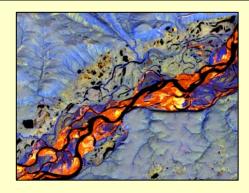
- The course will provide an overview of GPS and GIS in a simple and easy to understand way
- Teachers will be exposed to the various on-line and offline sources and repositries of geospatial data and educational material compiled by NASA and other organizations
- Teachers will use GPS receivers to collect field data and will have a chance to integrate it with other map data of their interest
- Teachers will learn to use the Arcview software package
- Lessons will be tailored to meet the national and state education standards

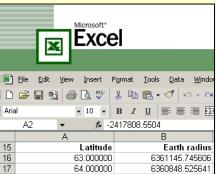
Note: Fore more information contact the Alaska Space Grant | Program Office at fyspace@uaf.edu; Phone (907) 474-6833



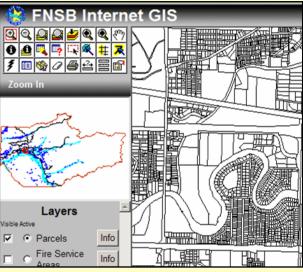
Participants

- 13 teachers (cap limit)
- 7 schools
- 5 different locations


Components of the course



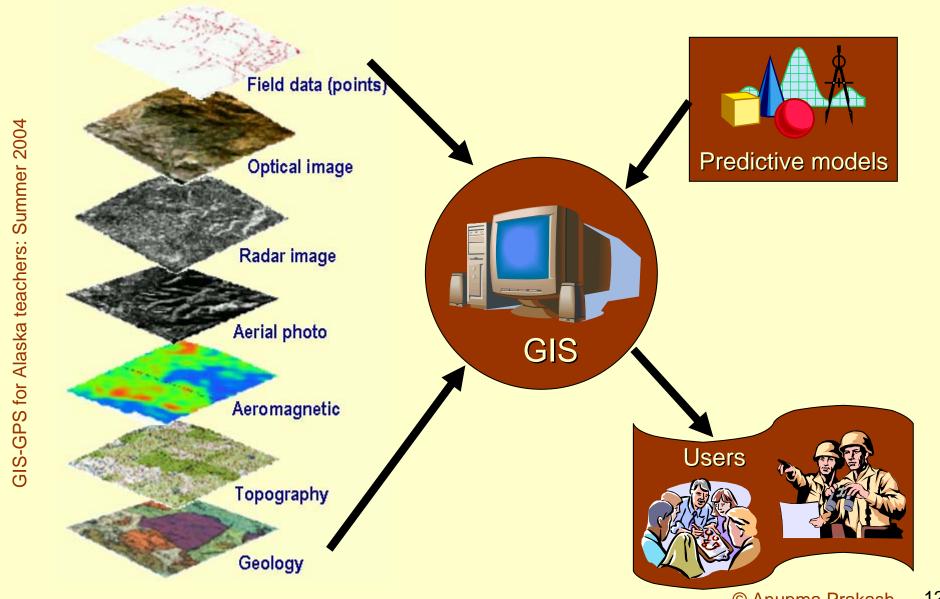
Lecture/Lab	Topic
Lecture 1	Introduction to the course - GIS / GPS
Lecture 2	Geospatial data and Alaska data
Lab 1	Getting started + Geospatial data sources
Lecture 3	More about GIS
Lecture 4	Point, vector and raster data
Lab 2	ArcView basics
Lecture 5	Introduction to GPS
Lecture 6	Integrating GPS data in a GIS
Lab 3	GPS data collection and processing
Lecture 7	Defining a GIS project
Lecture 8	Sample GIS applications
Lab 4	Landforms and physical processes
Lecture 9	GIS in Physical Geography 1
Lecture 10	GIS in Physical Geography 2
Lab 5	Ecosystems, climate and vegetation
Lecture 11	Analysis in GIS -1
Lecture 12	Analysis in GIS -2
Lab 6	Population patterns and processes
Lecture 13	Analysis in GIS -3
Lecture 14	Analysis in GIS -4
Lab 7	Political geography
Lecture 15	Analysis in GIS -5
Lecture 16	Cartography Basics
Lab 8	Economic geography
Lecture 17	Map Projections
Lecture 18	Creating your map
Lab 9	Human/Environment Interaction
Lecture 19	Tips and tricks for project reporting
Lecture 20	Printing final map and report
Lab 10	Issues/concerns/future direction


Data

- Data Formats
- Remote sensing data
- Earth Science data
- Alaska specific data

GPS

- Data collection
- Geocaching
- Direct import



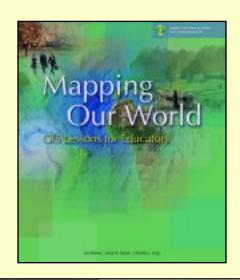
GIS

Lecture material

- Powerpoint
- Flip charts
- Sticky notes
- Group discussions
- Interactivity
- Coffee-cookie break

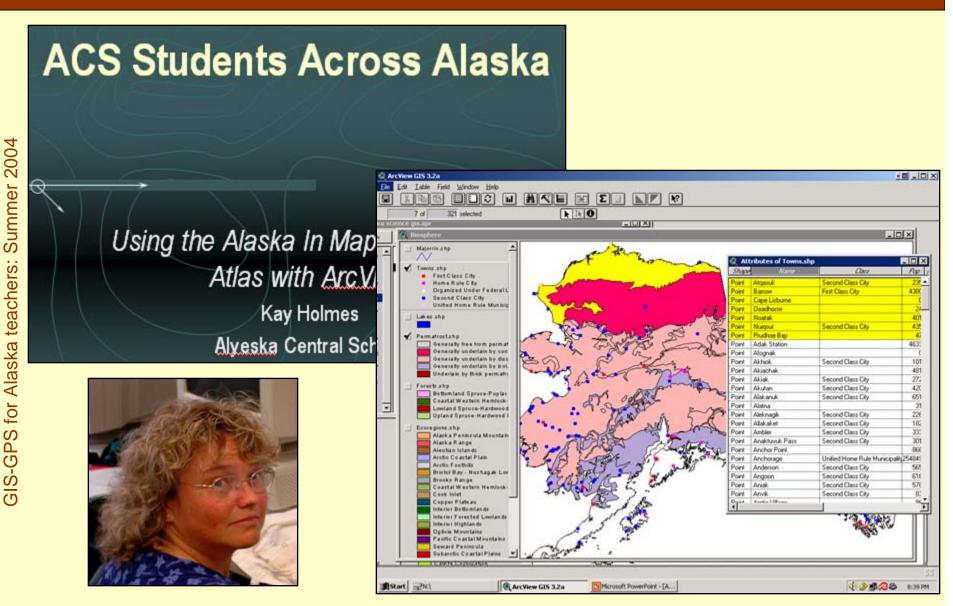
Industry visit

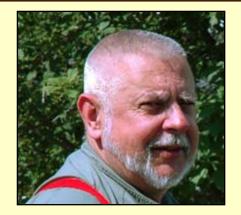
Fairbanks north Star Borough GIS facilities



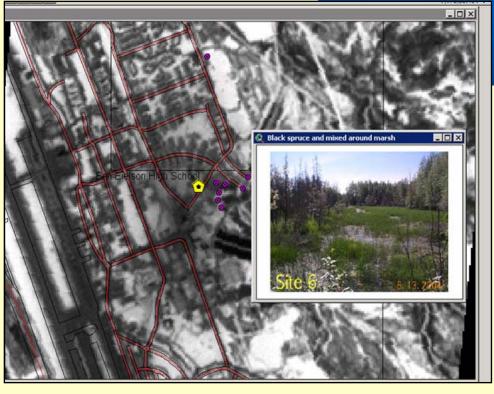
Supervised labs

- Followed ESRI text book
- Supervision assistance: Bill Witte, Rudi Gens, Stefan Gaston (summer intern)





Summer 2004


GIS-GPS for Alaska teachers:

Independent projects

Forest Vegetation Types in the Vicinity of Eielson High School

Pat Cromer and Larry Terch
-Ben Eielson High School

1. Prace the power button. Prace page untilly out see this somen. Prace the down arrow until scarp is highlighted. Prace CK.

4. Stand meanyour

modelsum Press

page untilyouese

this samen.Pmss

down to highlight

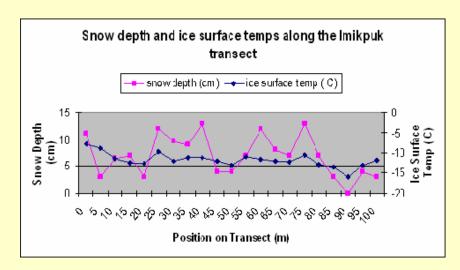
metrik . Passé OŘ.

2. Prace the down arrow until units is highlighted. Prace OK.

5. Press CK. This creates a way-point marking the location of your models un.

3. Press the down amow until measic is highlighted. Press OK.

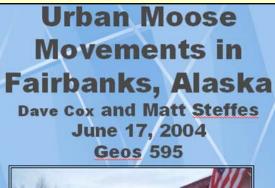
 Prace page until yourse this comen.
 Prace down to highlight way points.
 Prace CK.


Using GPS to Put Our Solar System in Perspective

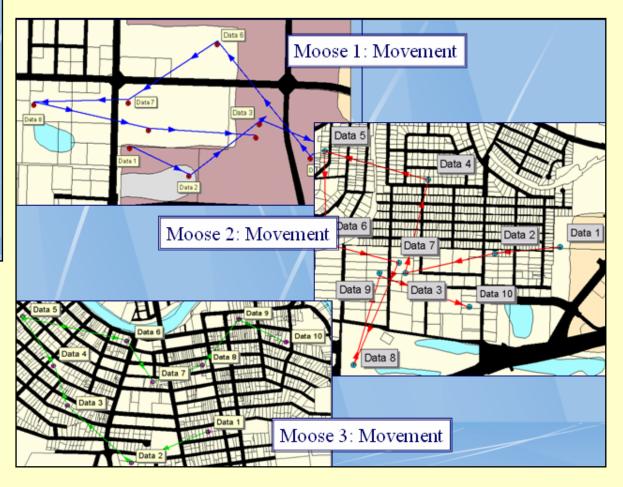
Presenter: Lori Schoening

IMIKPUK LAKE / ALISON DATA MANAGEMENT

Tim Buckley
Barrow High School

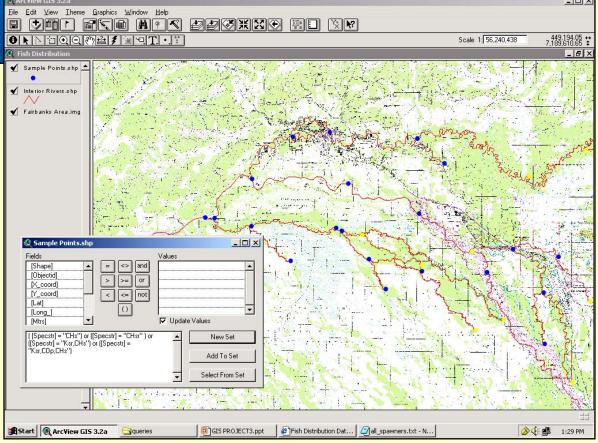


- Broaden the topic. A single transect on a single lake is too narrow
- Data can be more than numbers
- A database and a spreadsheet are NOT the same thing
- Think BIG PICTURE!!!



GIS-GPS for Alaska teachers: Summer 2004

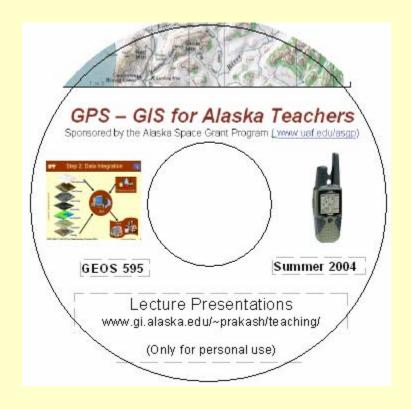
Independent projects



the Fairbanks Area

Will Boger – IDEA Fairbanks

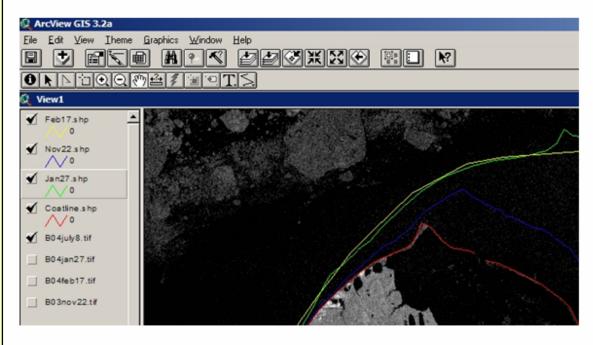
Stress release break



Follow up

- Teachers added to ATRM list serve
- Lecture material, additional information CDs, data backup were mailed to each individual
- Follow up visit:
 Barrow

Barrow HS lab



New exercise

Step 15. To trace the landfast ice edge for other dates, select the tif image of the other dates and repeat the procedure from step 8 through step 14. Assign a different color to each of the shape files so generated. Display the 4 vector shape files on top of the july 2004 image. Below is a sample of what your view may look like.

Step 16. Use the measure tool to measure the extent of the landfast ice edge from the shore.

New web page

Web site under construction www.gi.alaska.edu/~prakash/teaching/k12/barrow

Hands on with students

Network + new proposals

- With ASGP (Neal Brown): NASA
- With UAS (Cathy Connor): NSF
- With ESSE21 participants: Others

Lessons learned

- GPS GIS are great to introduce at school level
- They address several established standards
- Teachers and students are enthusiastic
- Class exercises need to be tailored to fit into the short 45-50 minute period
- Instructions have to be crisp and crystal clear

Some questions

- ArcView 3.x or ArcGIS 9 or ??
- Hardware and software costs
- Technical/maintenance issues
- Time within existing curriculum
- Sustainability: One time training reaching broad audience or repeat training with a narrow audience
- Funding

For summer 2005

- Alaska Space Grant Program Booth
- www.uaf.edu/asgp
- ATRM list serve
- ASTA web page
- Contact:

Email: <u>prakash@gi.alaska.edu</u>

Phone: 907-4741897

Web: www.gi.alaska.edu/~prakash

